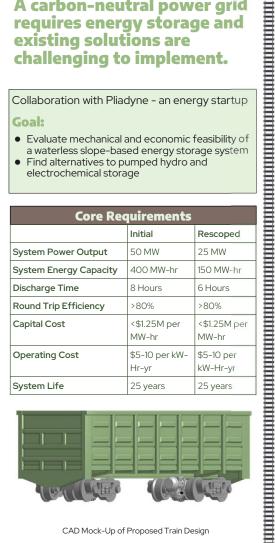
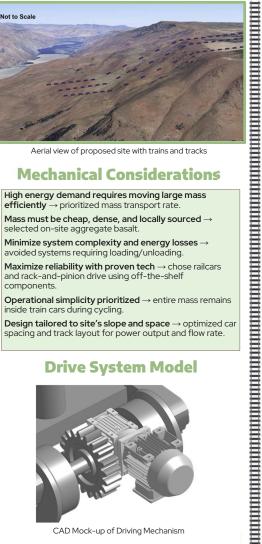
Plidayne Energy: Slope-Based Gravity Energy Storage System


A carbon-neutral power grid requires energy storage and existing solutions are challenging to implement.

Collaboration with Pliadyne - an energy startup


Goal:

- Evaluate mechanical and economic feasibility of a waterless slope-based energy storage system
- Find alternatives to pumped hydro and electrochemical storage

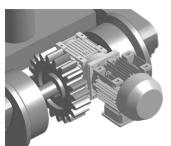
Core Requirements			
	Initial	Rescoped	
System Power Output	50 MW	25 MW	
System Energy Capacity	400 MW-hr	150 MW-hr	
Discharge Time	8 Hours	6 Hours	
Round Trip Efficiency	>80%	>80%	
Capital Cost	<\$1.25M per MW-hr	<\$1.25M per MW-hr	
Operating Cost	\$5-10 per kW- Hr-yr	\$5-10 per kW-Hr-yr	
System Life	25 years	25 years	

CAD Mock-Up of Proposed Train Design

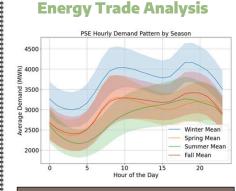
Mechanical Considerations

High energy demand requires moving large mass efficiently \rightarrow prioritized mass transport rate.

Mass must be cheap, dense, and locally sourced \rightarrow selected on-site aggregate basalt.

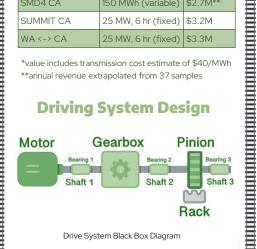

Minimize system complexity and energy losses \rightarrow avoided systems requiring loading/unloading.

Maximize reliability with proven tech → chose railcars and rack-and-pinion drive using off-the-shelf components.


Operational simplicity prioritized → entire mass remains inside train cars during cycling.

Design tailored to site's slope and space → optimized car spacing and track layout for power output and flow rate.

Drive System Model


CAD Mock-up of Driving Mechanism

4500 PSI	E Hourly Demand Pattern by Sea	ason
		\sim
4000		
3500		
4000 3500 3000 2500		
2500		Winter Mean
2000		Spring Mean Summer Mean Fall Mean
0 5	10 15	20
	Hour of the Day	
Arl	•	000177
	Hour of the Day	Annual
Arl Transmission Strategy	bitrage Results	
Transmission Strategy	bitrage Results Power Intake	Annual Revenue*
Transmission	Power Intake Strategy	Annual Revenue* \$0.4M
Transmission Strategy PSE WA	bitrage Results Power Intake Strategy 25 MW, 6 hr (fixed)	Annual Revenue* \$0.4M \$1.8M
Transmission Strategy PSE WA PALOVRDE CA SMD4 CA	bitrage Results Power Intake Strategy 25 MW, 6 hr (fixed) 25 MW, 6 hr (fixed)	Annual Revenue* \$0.4M \$1.8M \$1.7M
Transmission Strategy PSE WA PALOVRDE CA	bitrage Results Power Intake Strategy 25 MW, 6 hr (fixed) 25 MW, 6 hr (fixed) 25 MW, 6 hr (fixed)	Annual Revenue* \$0.4M \$1.8M \$1.7M \$2.7M**

*value includes transmission cost estimate of \$40/MWh **annual revenue extrapolated from 37 samples

Driving System Design

Drive System Black Box Diagram

Economic Analysis

Cost Estimates		
Component	Cost	
Construction & Materials	\$77 M (\$54 M with ITC)	
Annual Maintenance	\$1. 1M	
Annual Administrative	\$0.45 M	
Other Annual Costs	\$0.30 M	
Total Annual Costs	\$2.1 M	
Overhaul (every 10 years)	\$0.27 M	

When calculating for ROI, the current concept requires the investment tax credit (ITC) to make a positive return This ROI is 0.5%, lower than favorable

- Revenues ≥\$5 M can turn the investment favorable

Recommendations and Next Steps

The specific recommendation is that 1,500 cars can meet our energy target of 0.125 MWh each at 80% efficiency, using standard parts, used equipment, and inexpensive materials such as dirt and rock. Design:

- Custom vs. Retrofitted train car
- Train car prototype
- Flexible power output instrumentation
- Modeling of car movement
- Power transmission infrastructure
 - Input to motors
 - Output to arid Necessary transformers

Economic:

- Real-world arbitrage modeling
- Exploration of advanced trading algorithms
- Site re-evaluation
- General:
- Supply chain engagement Regulatory and environmental review
- Stakeholder expansion
- More advanced cost calculations

Acknowledgements: Thank you to Professor Patty Buchanan, Patrick Doneen, Doppelmayr Group